Useful Formulae for Module 3

Electrical symbols and units

Quantity	Symbol	Unit	Abbreviated units
Angle	ϕ	radian or degree	Rad or $^{\circ}$
Capacitance	C	Farad	F
Charge	Q	Coulomb	C
Conductance	G	Siemen	S
Current	I	Ampere	A
Energy	J	Joule	J
Flux	Φ	Weber	Wb
Flux density	B	Tesla	T
Frequency	f	Hertz	Hz
Impedance	Z	Ohm	Ω
Inductance	L	Henry	H
Power	P	Watt	W
Reactance	X	Ohm	Ω
Resistance	R	Ohm	Ω
Time	t	second	S
Voltage	V	Volt	V

Charge, current and voltage
$Q=I \times t$

Ohm's Law

$V=I \times R \quad$ and $\quad I=V / R \quad$ and $\quad R=V / I$
Similarly if resistance is replaced by reactance or impedance:

$\begin{array}{lllll}V=I \times X & \text { and } & I=V / X & \text { and } & X=V / I \\ V=I \times Z & \text { and } & I=V / Z & \text { and } & Z=V / I\end{array}$

Power and energy

$\begin{array}{llll}P=I \times V \quad \text { and } & P & =V^{2} / R & \text { and } \\ J=P \times t & P=I^{2} R \\ \text { and since } & P & =I \times V & \text { so } \\ J & =I V t\end{array}$

Resistors in series

$R_{\mathrm{T}}=R_{1}+R_{2}+R_{3}$

Resistors in parallel

$\frac{1}{R_{\mathrm{T}}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}} \quad$ but where there are only two resistors $R_{\mathrm{T}}=\frac{R_{1} \times R_{2}}{R_{1}+R_{2}}$

Capacitance

$C=\frac{\varepsilon A}{d}$ where ε is the permittivity of the dielectric and $\varepsilon=\varepsilon_{0} \varepsilon_{\mathrm{r}}$

Capacitance, charge and voltage

$Q=C V$
Inductance
$L=n^{2} \frac{\mu A}{l}$ where μ is the permeability of the magnetic medium and $\mu=\mu_{0} \mu_{\mathrm{r}}$

Energy stored in a capacitor

$J=1 / 2 C V^{2}$

Energy stored in an inductor

$J=1 / 2 L I^{2}$
Inductors in series
$L_{\mathrm{T}}=L_{1}+L_{2}+L_{3}$
Inductors in parallel
$\frac{1}{L_{\mathrm{T}}}=\frac{1}{L_{1}}+\frac{1}{L_{2}}+\frac{1}{L_{3}} \quad$ but where there are only two inductors $L_{\mathrm{T}}=\frac{L_{1} \times L_{2}}{L_{1}+L_{2}}$
Capacitors in series
$\frac{1}{C_{\mathrm{T}}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}$ but where there are only two capacitors $C_{\mathrm{T}}=\frac{C_{1} \times C_{2}}{C_{1}+C_{2}}$

Capacitors in parallel

$C_{\mathrm{T}}=C_{1}+C_{2}+C_{3}$

Induced e.m.f. in an inductor

$e=-L \frac{d i}{d t} \quad$ where $\frac{d i}{d t}$ is the rate of change of current with time
Current in a capacitor
$i=C \frac{d v}{d t} \quad$ where $\frac{d v}{d t}$ is the rate of change of voltage with time

Sine wave voltage

$v=V_{\max } \sin (\omega t) \quad$ or $\quad v=V_{\max } \sin (2 \pi f t)$ because $\omega=2 \pi f$
$f=1 / T \quad$ where T is the periodic time

For a sine wave, to convert:
RMS to peak multiply by $\mathbf{1 . 4 1 4}$
Peak to RMS multiply by 0.707
Peak to average multiply by $\mathbf{0 . 6 3 6}$
Peak to peak-peak multiply by 2

Capacitive reactance

$X_{\mathrm{C}}=\frac{V_{\mathrm{C}}}{I_{\mathrm{C}}}=\frac{1}{2 \pi f C}$

Resistance and reactance in series

$Z=\sqrt{\left(R^{2}+X^{2}\right)} \quad$ and $\quad \phi=\arctan \left(\frac{X}{R}\right)$
Resonance
$X_{\mathrm{L}}=X_{\mathrm{C}} \quad$ thus $\quad \omega L=\frac{1}{\omega C} \quad$ or $\quad 2 \pi f_{\mathrm{o}} L=\frac{1}{2 \pi f_{\mathrm{o}} C}$
$f_{\mathrm{o}}=\frac{1}{2 \pi \sqrt{L C}}$

Power factor

Power factor $=$ True power/Apparent power $=$ Watts $/$ Volt-amperes $=W /$ VA
True power $=V \times(I \times \cos \phi)=V I \cos \phi \quad$ Power factor $=\cos \phi=R / Z$
Reactive power $=V \times(I \times \sin \phi)=V I \sin \phi$

Motors and generators

$F=B I l$
$f=p n / 60 \quad$ where p is the number of pole pairs and n is the speed in r.p.m.

Three phase

Star connection $\quad V_{\mathrm{L}}=1.732 \times V_{\mathrm{P}} \quad$ and $I_{\mathrm{L}}=I_{\mathrm{P}} \quad$ note that $1.732=\sqrt{3}$
Delta connection $\quad V_{\mathrm{L}}=V_{\mathrm{P}}$ and $I_{\mathrm{L}}=1.732 \times I_{\mathrm{P}}$
Power in a three phase load $P=3 \times V_{\mathrm{P}} I_{\mathrm{P}} \cos \phi=1.732 \times V_{\mathrm{L}} I_{\mathrm{L}} \cos \phi$

